If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2m^2+16m-8=0
a = 2; b = 16; c = -8;
Δ = b2-4ac
Δ = 162-4·2·(-8)
Δ = 320
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{320}=\sqrt{64*5}=\sqrt{64}*\sqrt{5}=8\sqrt{5}$$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(16)-8\sqrt{5}}{2*2}=\frac{-16-8\sqrt{5}}{4} $$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(16)+8\sqrt{5}}{2*2}=\frac{-16+8\sqrt{5}}{4} $
| 9x-5=2x+11 | | 9x-5=2x1+ | | 2(22x-8)=3x-9 | | 9x-5=2x11 | | (-2j)+10j-4j+6j=10 | | 5(2x+3)=12x-5 | | -3(-2n+1)=3n+21 | | 60x+72=85 | | h*6=8 | | 60x+85=72 | | `6x+5=7x-2` | | 6x+30+42=72 | | y=120000(1.06)^5 | | 3c-45=93 | | 7/8y+1/2=1 1/5 | | x8+(2-x)10=-5 | | 3a+10a=8 | | `1-x=4x+17` | | (a+2)2+8=30 | | 12x-14=100 | | M(t)=100(0.97) | | 8√2y=96 | | 30x+15=10 | | 3n+16+-5n=30 | | y=0.06• | | y=0.06• | | y=0.06• | | 8x−6+2=2x−(4−6x) | | 1.2x=0.7 | | 24=6-(e-3) | | 2x+22=4x-8 | | 2-7x=-75 |